Counting and Cardinality

Comparison

	M4	M5	M6	M7	M8	M9
COMPARING NUMBER	More than/ Less than - NCETM	Comparing Number: Early Comparison Learning Trajectories	Comparing Number: Perceptual Comparer Learning Trajectories	Comparing Number: First-Second Ordinal Counter - Learming Trajectories	Comparing Number: Matching Comparer Learning Trajectories	Comparing Number: Spatial Extent Estimator-Small/Big - Learning Trajectories
		Recognises that two very small collections have the "same number" by intuitively making a colrespondence between int At this level, in certain situations, collection. At this level, in certain situation children may also put objects, words, or actions in one-to-one or many-to-one correspondence or a mixture.		Identifies the "first" and often "second" objects in a sequence.	Compares groups of 1-6 by matching.	Estimates which set is more or less if the ditferences are clear (C.e.9, one is double from $1-4$) for sets that cover ititle space and a "big number" " 10 -20 or more) for sets that this may change with the size of the to-be estimated objects.
				Comparina Number: Early Comparer of Similar Items - Learning Traiectories	Comparing Number:Counting Comparer (Same Size) - Learming Traiectories	Comparing Number: Countina Comparer (5) - Learning Traiectories
				Compares collections of 1 to 4 items verbally or nonverbally ("just by looking"). The items must be the same. May compare the small collections using number words "two" and "three" and "three" and others. Some do this even before they car number/subitizing for these quantities. May ransfer an ordering relation from one pair collections to another	Accurately compares via counting, but only when objects are about the same sizay an actrout Not always accurate When the larger collectio in size than the objects in the smaller coliection. Accurately counts two equal collections, but, has masked, says the collection of larger blocks has more	Compares with counting, even when larger collection's objects are smaller. Later, figures out how many more or less.
				Comparing Number: Early Comparer of Dissimilar Items - Learming Traiectories	Conservation-NCETM	Comparing Number: Mental Number Line to 5 -Learning Trajectories
				Matches small, equal collections consisting of different items, showing that they are the same number.	Children need the opportunity to recognise amounts that have been rearranged and to generalise that, if	Uses knowledge of counting number relationships to determine relative size and position when given perceptual support.
						Comparing Number: Serial Orderer to 5 Learning Trajectories
						Orders quantities (dots) or numerals up to 5. Similarly orders lengths marked into units.
						Comparing Number: Ordinal Counter Learning Trajectories
						Identifies and uses ordinal numbers from "first" to "tenth."
						Comparing Number: Counting Comparer (10) - Learning Trajectories
						Compares with counting, even when larger collection's objects are smaller, up to 10.
						Comparing Number: Mental Number Line to 10 - Learning Traiectories
						Uses internal images and knowledge of number relationships to determine relative size and position.

Composition

	M4	M5	M6	M7	M8	M9
$\begin{aligned} & \text { COMPOSING } \\ & \text { NUMBER } \end{aligned}$	Composing Numbers: Parts Combiner Learning Traecectories		Part-whole: identifying smaller numbers within groups and combining to a total) - NCETM	Inverse operations - NCETM	A number can be partitioned into different pairs of numbers - NCETM	A number can be partitioned into more than two numbers - NCETM
	Recognises that sets can be combined in different orders, but may not explicitly recognise that groups are additively composed of smaller groups. The studen also recognises part-whole relations in nonverbal, intuitive, perceptual situations and can nonverbally represent parts that make a whole.		Chidren need opportunities to see small numbers within a to discuss to discuss ladybirds: 'The For instance, with giant ladybirds: 'There are 5 spots altogether. I can see 4 and $1, I$ can 2 , and I can see 1 and 1 and 1 and 1 and $1 . '$ Encourage exploration of all the ways that 'five' can be and look. Children are encouraged to look closely at numbers to see what else they can see. This reinforces the concept of conservation.	Children need opportunities to partition a number of things into two groups, and to recognise that those groups childrage 'parts' makey the whole number that the altogether		Children need opportunities to explore the different ways hat numbers can be partitioned, i.e. into more than two groups. Situations to promote this include ncreasing the number of pots to put a given amount into e.g. planting en seeds into three or more pots.
			Composing Numbers: Inexact Part-Whole Recognizer - Learning Trajectories			Number bonds: knowing which pairs make a given number - NCETM
						Composing Numbers: Composer to 4 , then 5 - Learning Trajectories
						Knows number combinations. Quickly names parts of any whole, or the whole given the parts
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { ADDING/ } \\ \text { SUBTRACTING } \end{array} \\ \hline \end{array}$		Adding \& Subtracting: Preverbal +/- - Learning Trajectories		Adding \& Subtracting: Small Number +/- Learning Trajectories	Adding \& Subtracting: Find Result $+1-$ Learning Traiectories	Adding \& Subtracting: Find Change +/- Learnina Traiectories
		Adds and subtracts very small collections (totals up to three), often making a collection rather than answering verbally (if non-verbal, uses visual supports to communicate).		Finds sums for Join, Result Unknown and Separate, Result Unknown problems with totals up to 5 by "counting all" with objects.	Finds sums for Join, Result Unknown problems ("You had 3 apples and get 3 more, how m do you have in all?") and part-part-whole ("There are 6 girls and 5 boys on the playground, how many children were there in all?") problems by direct modeling, counting all with objects. Solves take-away problems by separating with objects.	
					Adding \& Subtracting: Make it N - Learning Trajectories	
					Adds on obiects to "make one number into another," not (necessarily represent how many were added (this is not a requirement of thi intermediate-difificulty probilem type).	
$\begin{array}{\|l\|} \hline \text { MULTIPLICATION/ } \\ \text { DIVSION } \end{array}$	Multiplving/Dividing: Nonquantitative Sharer Foundations - Learning Trajectories			Multiplying/Dividing: Beginning Grouper and Distributive Sharer - Learning Trajectories	Multiplying/Dividing: Grouper and Distributive Sharer - Learning Traiectories	Multiplying/Dividing: Concrete Modeler x / \div - Learning Trajectories
	Gives some, but not necessarily an equal number to each person.			Makes small groups (fewer than 5). Shares by "dealing out," but usually only between 2 people. May not appreat.	Makes small equal groups (fewer than 6). Deals out equally between two or more reeipients, but may not understand tities are produced	Solves small-number multiplying problems by grouping - making each group and counting all. Solves division/sharing problems with informal division/sharing problems with informal strategies, using concrete objects; up to 20 objects and 2-5 people. May not understand equivalence of groups.
FRACTIONS		Fractions: Foundations: Early Proportional Thinker - Learning Trajectories	Fractions: Shape Equipartitioner - Learning Traiectotries		$\begin{aligned} & \text { Fractions: Half Recognizer - Learning } \\ & \hline \text { Traiectories } \\ & \hline \end{aligned}$	Fractions: Unit Fraction Recognizer - Learming Traiectories
		Has an intuition about proportions.	Can equipartition a whole shape, such as a circle or rectangle.		Recognizes "halves" at least in continuous (e.g. area) representations especially in the context of fair shares Recognition of the need for $1 / 2$ when sharing an odd number of objects Intuitively and visually, combines regions that are a part of a whole showing initial foundations for addition	Recognizes unit fractions in simple discrete (countable) and maybe continuous (e.g., area) representations for $1 / 2,1 / 3$, and $1 / 4$ and understands intuitively that they are formed by dividing a whole into equal parts. Names these shares.

Pattern

	M4	M5	M6	M7	M8	M9
Patterning	Patterning: Foundations - Learning Trajectories	Continuing an AB pattern - NCETM	Patterning: Pattern recogniser - Learning Trajectories	Patterning: Patterner AB - Learning Trajectories	Spoting an error in an AB pattern - NCETM	Patterning: Patterner - Learning Trajectories
	Detects and uses patterning implicitly and intuitively, such as in movement activities or and action. May be attentive to repeating patterns without recognizing them explicitly or accurately, often attending to individual attributes such as colour.	Children need the opportunity to see a pattern, to talk about what they can see, and to item at a pattern. At first, hey will do this one cube...verbalising the pattern helps. Children may then be asked to say what they would add next to continue it.	Recognises a simple pattern, usually $A B A B A B$, as a pattern, even if doesn't yet name or describe it.	Recognises, describes, and builds repeating ABAB patterns. These involve the following, which many children learn in this order, although this can vary by the task. 1 Fixes AB: Fill in missing element of an ABAB pattern. Duplicates AB: Duplicates ABABAB pattern (at first may have to work close to the same pattern away from the model pattern or when the model is out of sight). Extends AB: Extends AB patterns to add multiple units to the end of the pattern. This is easier for children if the pattern ends with	When working with AB patterns, children als need the ooportunities to spot and correct errors. It is easiest to spot an extra item, then missing item, then items swapped around. When presented with an AB pattern, children can be encouraged to describe it to make sur it is right. Then, to detect an error, they can track the pattern from the start. To begin with, children may know there is something wrong, but might not be able to say what hie eeror correct it, before being able to repair the error in one move.	Recognises, describes, and builds repeating patterns, including AB but also and $A A B C$.
						Patterning: Pattern Translator and Unit recoaniser - Learnina Traiectories
						Translates patterns into new media or using new materials; that is, abssiact generalize the pattern. Identifies the smallest core unit of a repeating pattern. (Most research indicates this develops later, Miller et al., 2016.) In functional thinking situations (e.g., p. \#), does not yet see 1.

Shape and Space

		Shows use of relationship of "next to" to make a (one-dimensional) line of blocks.	Builds vertical and horizontal components within a building, but within a limited range, such as building a "floor" or a simple "wall." These, then, are two-dimensional structures	Uses multiple spatial relations, extending in multiple directions and with multiple point of contact among components, showing flexibility in integrating parts of the structure Produces arches, enclosures, corners, and trial and error and simple addition of pieces		Composes shapes with anticipation, be produced with a composition of 2 or ore other (simple, familiar) 3D shapes. Can produce arches (with vertical interior space), enclosures (with internal horizontal space), corners, and crosses systematically. Builds enclosures and arches several blocks high. Later in this level, children add depth to make 3D structures, structures multiple blocks may have no internal spaces).
	Composing 3D shapes: Stacker - Learning Trajectories	Composing 3D shapes: Same Shape Stacker Learning Trajectories				
	Shows use of the spatial relationship of "on" to stack blocks, although choice of blocks may be unsystematic.	Shows use of relationship of "on" to stack congruent blocks, or those that show a simiarly helpful relationship to make stacks of nes.				
SPATIAL VISUALISATION		Spatial Visualization: Concrete Slider, Flipper, Turner - Learning Trajectories		Spatial Visualization: Simple Slider and Turner - Learning Traiectories		Spatial Visualization: Beainning Slider, Flipper, Tumner - Leamning Trajectories
		Can move shapes to a location by physical trial and error.		Slides and turns objects accurately in easy the motion and then adjusts sthe motion, direction, or amount) in real time as the motion is carried out. motion is carried out.		Uses the correct motions guided by more developed intuition, but not always accurate in direction and amount (adjusts these with trial and error). Knows a shape has to be flipped to flips it in the wrong direction.
$\begin{array}{\|l\|} \hline \text { SPATIAL } \\ \text { ORIENTATION } \end{array}$	Spatial Orientation: Path Integrater Learning Trajectories	Spatial Orientation: Place Learner - Learning Trajectories	Spatial Orientation:Local-Self Framework User Leamina Traiectories		$\frac{\text { Spatial Orientation: Small Local Framework }}{\text { User - Leamina Traictories }}$	$\frac{\text { Spatial Orientation: Local Framework User }}{\text {-Learning Traiectories }}$
	Remembers and can repeat movements they have made including the approximate distances and directions	Creates "mental maps" by storing locations distances, and directions to landmarks and solves spatial problems. Uses the walls of a room as a frame of reference; uses spatial vocabulary, such as "in," "on," and "under," along with vertical directionality terms as "up" and "down."	Uses distant landmarks to find objects or location near them, even after they have the target object is specified ahead of time. Orients a horizontal or vertical line in space (Rosser, Horan, Mattson, \& Mazzeo, 1984) Uses spatial vocabulary to direct attention to spatial relations, including more difficult terms such as "beside" and "between."			Locates objects after moving, maintaining arrangement of objects. objects' positions relative to landmarks (e.g., about halfway in between two landmarks) and keeps track of own location in open areas or mazes. Uses spatial vocatial ary to direct attention to spatial relations. Uses coordinate labels in simple situations such as situations such as games.

